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Abstract— In this paper the defect–correction method has been applied to solve some singularly perturbed elliptic boundary 
value problems of convection-diffusion type.  From the available literature from an earlier work, it was proved that the use of 
standard defect–correction technique allows one to improve the order of convergence of stable low order finite difference 
schemes. However, it is difficult to prove the uniform convergence for one dimensional problem and we do not know at present 
any theoretical result proving uniform convergence for general two dimensional elliptic problems.  By an another approach 
proposed, it was found that a simplified analysis is used for one dimensional problems of convection-diffusion type which gives 
almost second order uniform convergence of the method.  In this work we show numerically that it is possible to extend this 
parameter-uniform method and the simplified analysis to the case of a two dimensional elliptic boundary value problems.  
 
Index Terms— Defect-correction, finite difference method, Shishkin mesh, singular perturbation, uniform convergence. 
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1 INTRODUCTION                                                                     

Singularly perturbed problems are characterized by the 
presence of a small parameter multiplying the highest 
order derivatives of the differential equation. The 
presence of the singular perturbation parameter results 
in the solution of these problems having a multi-scale 
character. That is, narrow regions (boundary layers) 
appear close to the boundary where the solution has 
large gradients. So, it is desirable to design special 
numerical methods which generate numerical approx-
imations converging to the exact solution independent-
ly of the value of the singular perturbation parameter. 
These methods are called uniformly convergent meth-
ods or parameter uniform methods.  
 
In [2] some parameter uniform fitted mesh methods 
were presented for problems of this kind, using exclu-
sively a special class of meshes introduced by Shish-
kin. These meshes are simple to construct, are piece-
wise uniform and condense half the mesh points into 
the boundary layer regions. In the literature there are 
many first order finite difference schemes used to ap-
proximate efficiently a wide class of one and two di-
mensional singularly perturbed problems. Moreover, it 
is possible to apply some classical techniques to im-
prove the uniform order of convergence in the one di-
mensional case.  For the convection–diffusion elliptic 
problems given by 
 

2. , ( , ) (0,1) , ,L u u a u bu f x y u g onε ε≡ ∆ + ∇ − = ∈Ω= = ∂Ω   
      (1) 

where the author proves almost second order uniform 
convergence in the maximum norm [6]. In that paper, 
the Richardson extrapolation technique was applied to 
the upwind operator defined on a special Shishkin 
mesh. It is well known that the Richardson extrapola-
tion technique requires one to solve two discrete prob-
lems. The basic discrete problem associated with the 
original mesh and a second discrete problem associat-
ed with a new mesh composed of the mesh points of 
the original mesh and their midpoints. Note also that 
the analysis of the uniform convergence of this tech-
nique employs an asymptotic expansion of the error in 
powers of the discretization parameter. 
 
This paper is motivated by our interest in high order 
parameter uniform finite difference schemes. Here, we 
consider the defect–correction method to achieve al-
most second order uniform convergence. This method 
was applied in [3] for one dimensional problems, 
where the upwind operator (stable) and the central dif-
ference operator (unstable) were combined; unfortu-
nately, the analysis of the uniform convergence, pro-
posed in that work, is complicated and it appears diffi-
cult to extend to two dimensional elliptic problems. In 
[4] a new basic stable scheme was proposed, simplify-
ing the analysis of the uniform convergence in the 
case of one dimensional problem. 
  
The paper is presented as follows. In section 2, we de-
scribe the new method and in section 3 we show that it 
can be extended to the two dimensional case. The nu-
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merical results suggest almost second order uniform 
convergence of the numerical method. Hereinafter, C 
denotes a positive constant independent of the singular 
perturbation parameter ε and the discretization param-
eter N.  
 
2. DEFECT CORRECTION METHOD FOR ONE 
DIMENSIONAL PROBLEM 
 
Here we consider boundary value problems for ordi-
nary differential equation of convection–diffusion type 
given by 
 

0 1" ' , (0,1), (0) , (1)L u u au bu f x u u u uε ε≡ + − = ∈Ω= = = , 
      (2) 

where we assume that the singular perturbation pa-
rameter ε can take small positive values, 0< ε ≤1, the 
coefficients a, b, f ∈C5(0,1) and a ≥ α >0, b ≥ 0, for all 
x∈ [0,1].  The solution of (2) has a boundary layer at  
x = 0 having a width O(ε ln(1/ε)); moreover (see [2]) 
its derivatives satisfy the bounds 
 
|u(k)(x)|  ≤ C(1 + e−k exp(−αx/ε)), 0 ≤ k ≤ 4.  (3) 
 
To prove uniform convergence of the numerical 
scheme, it is convenient to use an appropriate decom-
position of the exact solution u. Following [2], we 
write u = v + w, where v and w are the regular and sin-
gular components of the exact solution respectively. 
They are the solutions of the following boundary value 
problems: 
 

*

*

, (0) (0), (1) (1),

0, (0) (0) (0), (1) 0,

L v f v v v u

L w w u v w
ε

ε

= = =

= = − =  

where v*(0) is taken so that 

|v(j)(x;ε)| ≤ C, 0 ≤ j ≤ 3,  ε|v(4)(x;ε)| ≤ C,  (4) 
 
|w(x;ε)| ≤ Cexp(−αx/ε),  |w(j)(x;ε)| ≤ Cε−j, 1≤ j ≤4  
      (5) 
To approximate the solution of (2), we consider a fi-
nite difference scheme defined on a Shishkin mesh. 
Let N be the discretization parameter; then the Shish-
kin mesh is defined by using the transition parameter 
 
σ = min{1/2,  (3/α) ε ln(N)}   (6) 

and dividing uniformly each one of the subdomains 
[0,σ], [σ,1] into N/2 intervals. Then, the set of mesh 
points N

εΩ  is given by 
 

, 0 / 2
( / 2) , / 2 ,j

jh j N
x

j N H N j Nσ
≤ ≤

=  + − ≤ ≤
  (7) 

 
where h=2σ/N is the fine mesh step and H =2(1−σ)/N 
is the coarse mesh step. Below, we denote by h j+1 = 
xj+1 − xj for j = 0, . . . , N−1, and 1( ) / 2j j jh h h += +  for 
j = 1, . . . , N−1. On this piecewise uniform mesh, we 
consider the following hybrid three point finite differ-
ence scheme: 
 

1 1 0 0 1, 0 , ,

(8)

N c
J j j j j j j j NL U r U r U r U f j N U u U u− +

− +≡ + + = < < = =

where the discrete operator LN is defined by 

*
1

*
1

, 1 / 2

, / 2 || ||

, / 2 || ||

N
cd

N N
cd
N
up

L if j N
L L if N j N and a N

L if N j N and a N
ε

ε

−

−

 ≤ <


≡ ≤ < <
 ≤ < ≥

  

The central difference operator *
N
cdL (slightly modi 

fied at the transition point) and the upwind operator 
N
upL are given by  

2
*

2

,

,

N
cd j j j j j j j

N
up j j j j j j j

L U U a D U b U f

L U U a D U b U f

εδ

εδ

±

+

≡ + − =

≡ + − =
  

where 
1 12

1

1 1

1 1

1

1 1

1 ( ),

, ,

.

j j j j
j

j jj

j j j j
j j

j j

j j
j j j

j j j j

U U U U
U

h hh
U U U U

D U D U
h h
h h

D U D U D U
h h h h

δ + −

+

+ −+ −

+ +

+± + −

+ +

− −
= −

− −
= =

= +
+ +

 

Theorem 2.1 [4] The error associated with the hy-
brid scheme (8) satisfies 

|u(xj) − Uj | ≤ 
1 1

2 3 1

, || || ,
(ln ) , || || ,

CN if a N
CN N if a N

ε

ε

− −

− −

 ≥


<
  (9) 

and hence it is a first order uniformly convergent 
method. 
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      To improve this order of uniform convergence, we 
apply the defect–correction method.  Note that the use 
of the hybrid scheme (8) instead of the upwind scheme 
allows one prove almost second order in the case 

1|| ||a N ε− < , and therefore in this case it is not neces-
sary to modify the numerical solution given by scheme 
(8). Otherwise, it is necessary to correct the numerical 
solution in an appropriate way to obtain second order 
convergence.  In [4] the following approximation to 
the solution of problem (2) was proposed 
 

1ˆ , || || ,
ˆ , .

U U if a N

U U otherwise

ϑ ε− = + ≥


=
  (10) 

 
Here ϑ   is the solution of the discrete problem 
 

, 0 ,N N
cdL f L U in inϑ ϑ= − Ω = ∂Ω   (11) 

 
where N

cdL is the classical central difference operator, 
which is defined by 
 

*
* 2 0

, / 2,

, / 2,

N
cd jN

cd j
j j j j j j

L Z if j N
L U

Z a D Z b Z f if j Nεδ

 ≠≡ 
+ − = =

  

In [4] it was showed that if D± is used instead of D0 at 
the transition point to find the corrected solution, then 
the resulting numerical method is not parameter-
uniformly convergent. The numerical solution of 
scheme (10) satisfies the following convergence re-
sult. 
 
Theorem 2.2. [4]  The error associated with the defect-
correction scheme (10) satisfies 

2 3ˆ|| || (ln ) ,u U CN N−− ≤  
where u is the solution of the problem(2) and Û  is the 
numerical solution given in (10). Hence, the new 
method is almost second order uniformly convergent. 
 
To confirm the theoretical result of convergence 
proved in Theorem 2.2, we consider the following test 
problem: 
ε u″ + u′ = − ex (1+ε),  x ∈ (0,1), u(0)=1, u(1)=1−e, 

      (12) 
whose exact solution is  
u(x) = [e−(x/ε) − e−(1/ε)] / (1− e−(1/ε) )  + 1− ex.  

 
Then, for any value of N, the maximum pointwise er-
rors Eε, N  and the ε–uniform errors are calculated by 

,,
ˆmax | ( ) |, maxi N NN i

E u x U E Eεε ε
= − =  respectively, 

where u(xi) is the exact solution of (12) and Û is the 
numerical solution of the finite difference scheme 
(10). From these values the orders of convergence pε,N 
and the order of ε–uniform convergence pN are calcu-
lated using pε,N = log (Eε,N / Eε,2N) / log2 and 
pN = log(EN/E2N)/log 2. 
         
Table 1 displays the ε–uniform maximum errors (EN) 
and the ε–uniform orders of convergence (PN) for the 
range of values ε = 1, 2−2, 2−4, . . ., 2−30, for problem 
(12).  From these results we see that almost second 
order uniform convergence in the maximum norm, 
which is in agreement with the bound in Theorem 2.2. 
 
Table 1: Numerical results for problem (12) 
 N=32 N=64 N=128 N=256 N=512 N=1024 
E
N 

1.641 
e-2 

5.483
e-3 

1.781 
e-3 

5.662 
e-4 

1.758 
e-4 

5.353e-5 

P
N 

1.581 1.622 1.653 1.688 1.715 1.739 
 

 
3. DEFECT CORRECTION METHOD FOR 
TWO DIMENSIONAL PROBLEMS 
 
The aim of this section is to show that the ideas devel-
oped for the one dimensional case can be extended to 
elliptic boundary value problems given by 
 

2. , ( , ) (0,1) ,L u u a u bu f x y u g onε ε≡ ∆ + ∇ − = ∈Ω= = ∂Ω   
      (13) 
where the coefficients of the differential equation  
a1, a2, b and f are sufficiently smooth and  they satisfy  
a = (a1(x), a2(y)) ≥ (α1, α2) > (0, 0),  b(x, y) ≥ 0, in 
Ω.  Further, we suppose that sufficient compatibility 
conditions hold in order that u ∈ C4,α( Ω) (space of 
Hölder continuous functions whose derivatives up to 
fourth order exist and they are Hölder continuous). To 
achieve this regularity, compatibility conditions up to 
second level are necessary (see [5]). 
      Using an appropriate change of variable and a 
classical analysis (see [7]), we can deduce the follow-
ing crude bounds for the exact solution and its partial 
derivatives in the maximum norm 

( , ) ( )|| || , 0 4.i j i ju C i jε − +≤ ≤ + ≤  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015                                                                                                    53 
ISSN 2229-5518   

 
IJSER © 2015 

http://www.ijser.org 

 
Also, it is well-known (see [2]) that the exact solution 
of (13) has two regular boundary layers near the sides 
x = 0 and y = 0 of width O(ε ln1/ε).  
To approximate the solution of (13), again we consid-
er a piecewise uniform mesh , 0{( , )}N N

i j i jx y =Ω = , 
which is the tensor product of the corresponding 
Shishkin mesh considered for the one dimensional 
problem. Then, the mesh points are 

/2

, 0 / 2
( / 2) , / 2 ,i

N

ih i N
x

x i N H N i N
≤ ≤

=  + − < ≤
 

 

/2

, 0 / 2
( / 2) , / 2 ,j

N

jk j N
y

y j N K N j N
≤ ≤

=  + − < ≤
 

where h = 2σx/N,   k = 2σy /N,  H = 2(1−σx)/N, K = 
2(1−σy)/N and the transition parameters are defined 
by 
σx = min{1/2,  (3/α1) ε ln(N)},  
σy = min{1/2,  (3/α2) ε ln(N)}. 
 
Let us denote the local step sizes by 
hj = xj − xj−1,  kj = yj − yj−1,  j = 1,2,…,N, 

jh  = (hj + hj+1)/2,  jk  = (kj + kj+1)/2,  j = 1,2,…,N−1. 
 
On this mesh we define the following hybrid scheme 
 

2 2
, , 1 , 2 ,

,

,

( ) ( ) ( )

( , ) ( , ) , (14)

( , ) ,

N
i j x y i j i x i j j y i j

N
i j i j i j

N
i j i j

L U U a x D U a y D U

b x y U f x y in

U g x y on

ε δ δ ≡ + + +
 − = Ω


= ∂Ω

 

where 
2

, , ,

2
, , ,

1 ( ),

1 ( ),

x i j x i j x i j
i

y i j y i j y i j
j

U D U D U
h

U D U D U
k

δ

δ

+ −

+ −

= −

= −
  

1
, 1

, 1
, 1

, || ||

, || || ,
x i j

x i j
x i j i x

D U if a N
D U

D U if a N or x

ε

ε σ

+ −

± −

 ≤≡ 
< <

  

1
, 2

, 1
, 2

, || ||

, || || ,
y i j

y i j
y i j j y

D U if a N
D U

D U if a N or y

ε

ε σ

+ −

± −

 ≤≡ 
< <

  

1
, , ,

1 1

,i i
x i j x i j x i j

i i i i

h hD U D U D U
h h h h

± + −+

+ +

= +
+ +

  

1
, , ,

1 1

,j j
y i j y i j y i j

j j j j

k k
D U D U D U

k k k k
+± + −

+ +

= +
+ +

  

1, , , 1,
, ,

1

, ,i j i j i j i j
x i j x i j

i i

U U U U
D U D U

h h
+ −+ −

+

− −
= =   

, 1 , , , 1
, ,

1

, .i j i j i j i j
y i j y i j

j j

U U U U
D U D U

k k
+ −+ −

+

− −
= =   

Following (8), it is not difficult to prove that the error 
associated to the hybrid scheme (14) satisfies ||u − U|| 
≤ CN−1,  proving first order uniform convergence. To 
improve this order, similar to the one dimensional case 
we propose the following defect–correction scheme 
 

1
1 1

ˆ , max{|| ||,| ||} ,
ˆ , .

U U if a a N

U U otherwise

ϑ ε− = + ≥


=
   (15) 

 
where now ϑ  is the solution of the discrete problem 
 

, 0N N
cdL f L U in onϑ ϑ= − Ω = ∂Ω ,    (16) 

 
with 

2 2 0 0
, , 1 , 2 ,

,

( ) ( ) ( )

( , ) ,

N
cd i j x y i j i x i j j y i j

i j i j

L U U a x D U a y D U
b x y U

ε δ δ≡ + + +

−
 

1, 1, , 1 , 10 0
, ,

1 1

, .i j i j i j i j
x i j y i j

i i j j

U U U U
D U D U

h h k k
+ − + −

+ +

− −
= =

+ +
  

To illustrate the uniform convergence of this defect–
correction method numerically, we show the numeri-
cal results obtained for two test problems, whose exact 
solution in both cases is unknown. To estimate the 
pointwise errors of the solution { ˆ NU }, we use a vari-
ant of the double mesh principle [1]; then, we calcu-
late a new approximation { 2ˆ NV } on the mesh 

2 { , }N
i jx yΩ =     that uses the mesh points of the origi-

nal Shishkin mesh and their midpoints, 
 

2 2, , , 0,1,... ,i i j jx x y y i j N= = =    (17) 

2 1 1 2 1 1 , 0,1, ... 1.( ) / 2, ( ) / 2,i i i j j j i j Nx x x y y y+ + + + = −= + = + 

      (18) 
In this way, we compare both numerical solutions at 
the mesh points of the coarse mesh, i.e., we calculate 
Dε,N (x i, yj) = 2

, 2 ,2
ˆ ˆ| |N N

i j i jU V− .  For each fixed value of ε, 
the maximum errors and the numerical orders of con-
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vergence are computed by Dε,N = 
,

max
i j

 Dε,N (x i, yj) 

and qε,N = log(Dε,N/ Dε,2N)/ log2 respectively.  From 
these values we calculate the ε-uniform errors and the 
ε-uniform orders of convergence DN = maxε Dε,N and 
qN = log(DN/ D2N)/ log2. 
 
The first test problem is given by 
 
ε∆u+(1+x)ux +(2+y)uy − u = (1−x)+(1−y) in Ω = (0,1)2,  
u = 1 on ∂Ω .      (19) 
 
The data of this problem do not satisfy sufficient com-
patibility conditions in order that the exact solution 
has the required regularity (see [5]). Concretely, we 
only have compatibility conditions of level zero, that 
is, the boundary conditions are continuous in the four 
corners of the unit square. Table 2 displays the numer-
ical results for the same range of values of ε as 
before, giving in the first row the ε–uniform errors and 
in the second one the corresponding uniform orders of 
convergence. From this table we clearly see that we do 
not have a second order rate of uniform convergence. 
 
Table 2: Numerical results for problem (19) 
 N=16 N=32 N=64 N=128 N=256 
DN 0.310e-1 0.127e-1 0.485e-2 0.329e-2 0.228e-2 
qN 1.288 1.388 0.561 0.528  
 
The second test problem is given by 
 
ε∆u+(1+x)ux +(2+y)uy = (1−x)+(1−y) in Ω = (0,1)2,  
u = 0 on ∂Ω .      (20) 
 
Now, we again have compatibility conditions of level 
zero at three corners of the unit square, and we can 
check that in the inflow corner (1, 1) the first level of 
compatibility is satisfied.  Table 3 displays that the 
scheme (15) is amost second order uniformly conver-
gent. Therefore, we can conjecture that the defect cor-
rection technique improves the order of convergence 
of the basic hybrid scheme when a sufficient level of 
compatibility holds. 
 
Table 3: Numerical results for problem (20) 
 N=16 N=32 N=64 N=128 N=256 
DN 0.225e-1 0.827e-2 0.283e-2 0.925e-3 0.298e-3 
qN 1.445 1.547 1.612 1.633  
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